
MATHEMATICS OF COMPUTATION
VOLUME 48, NUMBER 177
JANUARY 1987, PAGES 103-121

Implementation of a New Primality Test

By H. Cohen and A. K. Lenstra

Dedicated to Daniel Shanks on the occasion of his 70th birthday

Abstract. An implementation of the Cohen-Lenstra version of the Adleman-Pomerance-Rumely
primality test is presented. Primality of prime numbers of up to 213 decimal digits can now
routinely be proved within approximately ten minutes.

Introduction. In [2] a theoretically and algorithmically simplified version of the
Adleman-Pomerance-Rumely primality testing algorithm [1] was presented. To
prove its practical value, we implemented the algorithm from [2]. As a result,
numbers of up to 213 decimal digits can be handled within approximately ten
minutes of computing time on a CDC Cyber 170/750.

In fact, two programs have been written. The first program, written in Pascal, was
devised for numbers of up to 104 decimal digits. In order to increase the portability
of the program, we translated it into Fortran and at the same time extended its
capacity to 213 decimal digits. This Fortran implementation now runs on the
following computers: CDC Cyber 170/750, CDC 205, and Cray 1. For these
machines, multiprecision integer arithmetic routines were written in their respective
machine languages by D. T. Winter from the Centrum voor Wiskunde en Infor-
matica in Amsterdam.

This paper does not present any new results. We only describe how a slightly
improved version of the algorithm from [2] was implemented. No detailed program
texts will be given, but we supply enough information for anyone who might be
interested in implementing the algorithm from [2], and who was discouraged by the
more theoretical approach taken in [2].

The primality testing algorithm, as it has been implemented, is described in
Section 1. A further explanation of those parts of the algorithm for which we felt
that this might be helpful, can be found in Sections 2 through 6. Some examples and
running times are given in Section 7. In the Appendix (which appears in the
supplements section at the end of this issue), detailed formulae for multiplication in
cyclotomic rings are presented.

By Z we denote the ring of integers, and by Q the field of rational numbers. The
number of times that a prime number p appears in m is denoted by vp(m), for
m E Z $ O. By r I m we mean that r is a positive divisor of m. For a prime power pk

we denote by tp k a primitive p kth root of unity.

Received September 18, 1985; revised March 4, 1986.
1980 Mathematics Subject Classification. Primary 10-04, 1OA25.
Key words and phrases. Primality testing.

?01987 American Mathematical Society

0025-5718/87 $1.00 + $.25 per page

103

104 H. COHEN AND A. K. LENSTRA

1. The Primality Test. Combination of the results from [2, Sections 10 and 12] and
[5, Section 8] leads to the primality testing algorithm described in this section. For
the theoretical background we refer to [2], [5]. The notation that we introduce here
will be used throughout this paper.

Let N be some large integer. The primality testing algorithm described here can
be used to determine whether an integer n, 1 < n < N, is prime. The algorithm
consists of two parts. The first part, the preparation of tables, has to be executed
only once, because it only depends on N; the second part, the primality test, has to
be performed for every number n to be tested.

(1.1) Preparation of Tables. (a) Select an even positive integer t with e(t) > N1/2

(cf. (1.5)), where

e(t) = 2 1 qVq(t)+l
q prime, q-1It

and tabulate the primes dividing e(t); these primes will in the sequel be called the
q-primes. (In the Fortran program, t is chosen as 55440 = 24- 32 5 7 711.
Because e(55440) = 4.920- 10106 (rounded off downwards), we can handle numbers
of up to 213 decimal digits. For this value of t the number of odd q-primes is 44. By
using the improvement e(t) > N1/3 mentioned in [2], one could with the same t
handle numbers of up to 320 digits, but this has not been implemented. (See also
Remark (1.5).) The choice of t can be made, e.g., by table look-up (see for instance
Table 1 of [2]).

(b) Perform steps (bi) and (b2) for each odd prime q I e(t) (so q - lit).
(bi) Find by trial and error a primitive root g modulo q, i.e., an integer g # 0

mod q such that g(q -)/P 1 1 mod q for any prime p I q - 1. In our implementation
this was done by trying g = 2,3,4, ... in succession. Make a table of the function
f: {1,2,...,q - 2} -> {1,2,...,q - 2} defined by 1 - gX _ gf(X) modq. (So, first
make a table of log(gx mod q) = x, for x = 1,2, ...,q - 2, and next f(x) =

log((l - gx) mod q), for x = 1, 2,. . . ,q - 2.)
(b2) Perform steps (b2a), (b2b), (b2c) for each p I q - 1 (so p It).
(b2a) Put k = vp(q - 1), the number of factors of p in q - 1.
(b2b) If pk 0 2, compute and tabulate

q-2

jp, q = pXA+f(X) E= Z [tpk
x=1

(b2c) If p = 2, k > 3, compute and tabulate

q-2

j*=E t2x+f(x)E t] J2,q = 2A I

x=1

and

q-2

j#2 = E k2>3(3x+f(x)) E Z[t j]
X=l

Notice that Ijq J2q and (j#q)2 correspond, respectively, to J2q and J2#q from [2,
Section 12].

IMPLEMENTATION OF A NEW PRIMALITY TEST 105

The Jacobi sums in (b2b) and (b2c) can be computed as follows. We represent an
element ZO<l<(p_,)pA-aa'A of Z[~PA], with a, E Z, as a vector (a,)0,<p_1pA-l.
Initially, we put a, = 0 for 0 < i < (p - l)pk. Let a, b E Z; for the computation
of Ip q we take a = b = 1, for J2*q we take a = 2, b = 1, and for I2*"q finally
a = 3 * 2k - 3, b = 2k-3 . For x = 1, 2,. . ., q -2 in succession we do the following:

Put l=ax+bf(x) mod pk. If /<(p-l)pk-l, in-
crease a, by one. Otherwise, decrease a1, -, by one for
i = 1, 2, . . ., p - 1. (Notice that, for each x, this is the same
as replacing the vector (a,) by the vector (a,) + paA X+b f(x)

modulo the minimal polynomial of tP, the pkth cyclotomic
polynomial EPf?1 XPp A-)

At the end of this process we have a representation for the Jacobi sum in the vector

(a,).
This finishes the preparation of the tables.
(1.2) Remark. Notice that only the Jacobi sums are tabulated, and not the Jacobi

sum powers as in [2, Section 12], because that would require a lot of memory space,
even for moderately sized t. This implies that the Jacobi sum powers have to be
recomputed for every n. As they are easily calculated, this takes only a relatively
small amount of computing time (cf. remark after (6.1)). (In the Pascal program we
stored the Jacobi sum powers, as in [2, Section 12]; this resulted in a 1.5% speed-up.)

The reason that the Jacobi sums themselves are tabulated and not recomputed for
every n, is that their computation requires too much memory space (namely the
space to store the table of the function f).

We now present the primality testing algorithm as it follows from [2, Sections 10
and 12] and [5, Section 8]. A detailed description of the steps of the algorithm can be
found in Sections 2 through 6.

(1.3) The Primality Test. Let n, 1 < n < N, be an odd integer to be tested for
primality. Suppose that tables containing t, e(t), the q-primes, and the Jacobi sums
are prepared according to (1.1).

Preliminary tests. (a) Test whether gcd(t e(t), n) = 1. If not, then a prime divisor
of n is obtained, because all factors of t e(t) are known from (1.1). In this case,
Algorithm (1.3) is terminated.

(b) Select a trial division bound B and perform the trial division step (2.1) as
described in Section 2 for this value of B. If a nontrivial divisor of n is found, then n
is composite and Algorithm (1.3) halts. If no nontrivial divisor of n is found and
B > n/'2, then n is prime and Algorithm (1.3) halts. Otherwise, let 1- be the set of
odd prime numbers < B dividing n - 1, let r- be the largest odd factor of n - 1
without prime factors < B, and let f-= (n - 1)/r- be the factored part of n - 1.
Similarly, let 1+, r', and f' be the set of odd prime factors < B, the nonfactored
part, and the factored part of n + 1, respectively.

(c) Select a small positive integer m, and perform the probabilistic compositeness
test (3.4) as described in Section 3 at most m times. If, during the execution of (3.4),
n is proved to be composite, Algorithm (1.3) halts.

(d) As explained in [2, Section 10], it is useful to distinguish between the prime
power factors of t that divide n - 1 and those that do not divide n - 1. Declare

106 H. COHEN AND A. K. LENSTRA

therefore for all prime powers pk dividing t a Boolean variable flagpK, and put

flagpA ="true" if n 1 mod pk, and flagpA ="false" otherwise.
We could have done something similar for the prime power factors of t that divide

n + 1. We did not incorporate that in our implementations, however (see also
Remark (4.6)).

(e) Perform the Lucas-Lehmer test (4.4) as described in Section 4. If n does not
pass (4.4), report that (1.3) fails if (4.4) fails, and report that n is composite if that
has been proved in (4.4). In either case, Algorithm (1.3) is terminated.

If n passes (4.4) and its primality has been proved in (4.4), report that n is prime
and halt. Otherwise let, for pk such that flagpA = "true", elements #PA of Z/n Z be as
in (4.2) and (4.4)(cl). Then I31k is a zero of the pkth cyclotomic polynomial, and #PI
is its ith power.

If n passes the Lucas-Lehmer test, then for each r dividing n there exists an
integer i > 0 such that r n' mod (f -f+) (where f -f+ can be replaced by any
number built up from primes dividing f- f+; cf. (5.2)).

(f) Perform Algorithm (5.5) to select s = s5 52> n1/2 and a new value for t
dividing the old one (cf. (1.5)).

Here s1 is built up from primes dividing f. f+, and 52 is coprime to s, and built
up from primes dividing e(t). The factors of si have been dealt with by means of
the Lucas-Lehmer test, and the factors of 52 will be dealt with by means of Jacobi
sums.

For the resulting values of t and s we have n - 1 mod s (cf. [2, Proposition (4.1)],

(1.1)(a), and step (a)).
(g) Declare for each prime p > 2 dividing t a Boolean variable XP. Put p= "true"

if nP-1 # 1 mod p2 or p I f * f+, and Xp = " false" otherwise.
This Xp tells us whether or not condition [2, (6.4)], that has to be satisfied for all

primes dividing t, is satisfied already for p. For a further explanation of this step we
refer to Remark (4.5).

Pseudoprime tests with Jacobi sums. Perform steps (h), (i) for each prime p
dividing t.

(h) For each integer k > 1 with pk t, determine integers Uk, Vk such that
n = UkP k + vk, and 0 < vk < p.

(i) Perform steps (il), (i2), (i3) for each prime q I S2 with p I q - 1.

(il) Put k = vp(q - 1), and u = Uk, v = Vk as in (h). Perform steps (ila), (ilb),
(ilc), (ild). The exponentiations in Z[;pk]/nZ[;PA] may be carried out via the
multiplication and squaring routines given in the Appendix. For further computa-
tional details of this step we refer to Section 6.

(ila) If p 0 2, put

M ={x E Z: 1 < x < pk, x # 0 modp},

and let a, for x E M be the automorphism of Q(;pk) for which ao(^)= =px.
Calculate

jOpq = H x ai((jpq)X) E Z[tp]/nZ [;p] X eM

IMPLEMENTATION OF A NEW PRIMALITY TEST 107

and

Jt',p,q H ax1 ((jp,q)[
P

G) Z[pA]/nZ[pA],

where [y] denotes the greatest integer < y (cf. (6.1)).
(ilb) If pk = 2, put

JO,2,q = q, I1,2,q= 1.

(ilc) If pk = 4, calculate

JO,2,q J2,q- q E ZR4]/nZR4]'

and

(1 if v =1,
Jv.,2,q= ji2q if v= 3.

Notice that j32 q = i2 ,q and not J2,q as stated erroneously in [2, step (b2e) of (12.1)].
(ild) If p = 2, k > 3, put

L= {x eZ: 1 < x < 2k, x is odd}, M= {x e L: x1 or 3 mod8},

and let ax for x e M be the automorphism of Q(G2K) for which uX('20)= t2x.

Calculate

JO,2,q = M (2,q *j2,q) X) eZ2]/nZR2A I

and

M a9
I

((i2,q *j2,q)[) e Z[R2K]/nZ[DA] if Ve M,

Jvq q (i2q) H u;X (2(J q i2 j)[-2) E Z['2A]/nZ['2A] if v e L - M,

(cf. (6.1)).
(i2) If flagpA = "true", perform step (i2a), otherwise perform step (i2b).
(i2a) Define a ring homomorphism X: Z[;pA]/nZ[;px] -* Z/nZ by X(tpA) = PlA,

and verify that there exists an integer h e {0, 1,..., pk - 1} with

X(Jop,q) X(vpq) = PA1

(cf. Section 6), where #'A for 0 < i < pk are as in (e) (notice that we apply here the
results from [2, Section 10] for the case where, in the notation of [2, Section 10],
f= 1, i.e., n = 1 modpk) If h does not exist, then n is composite and Algorithm
(1.3) terminates. Suppose that h exists.

(i2b) Verify that there exists an integer h e {0, 1, . . ., pk - 1 } with

o Jip q = thA mod nZ[; A]

(cf. (6.2)). If h does not exist, then n is composite and Algorithm (1.3) terminates.
Suppose that h exists.

(i3) If h # 0 mod p and p is odd, put Xp = "true".
Additional tests. Perform steps 0) and (k) for every prime p dividing t for which

X P "false".
(j) Select a small prime number q not dividing s such that

q I mod2p, n(qI)/p W 1 modq.

108 H. COHEN AND A. K. LENSTRA

(In the Fortran implementation the search for these prime numbers begins at
20p + 1, and we allow for at most 50 primes of the form 2pm + 1 to be considered.)
If such a prime q cannot be found below a reasonable limit, do the following. Test
whether n is a pth power. If so, report that n is composite and halt. Otherwise, halt
with the message that the algorithm is unable to prove that n is prime. Suppose now
that q has been found. If n 0 mod q, then a prime divisor of n is found and the
algorithm halts.

(k) Let u, v be integers such that n = up + v, with 0 < v < p (cf. (h)), and
perform steps (1.1)(bl), (1.1)(b2b), (ila), (i2). Test whether the resulting h E Z
satisfies h # 0 mod p. If this is not the case, n is composite, and Algorithm (1.3)
halts. Otherwise, put Xp = "true".

Final trial division. We now have proved that for every divisor r of n there exists
i E {0, 1, . . ., t - I} such that r n' mod s. Since s > n1"2, the following suffices to
determine the divisors of n.

(1) Put h = n mod s, r = 1, and perform steps (11), (12), (13).
(11) Replace r by (hr) mods in such a way that the new value of r satisfies

0 <s r < s.
(12) If r = 1, report that n is prime and halt.
(13) If r I n and r < n, report that n is composite and halt.

Notice that (11), (12), and (13) are performed at most t times, because nt 1 mod s

(cf. step (f)).
This finishes the description of the primality testing algorithm (1.3).
(1.4) Remark. The above formulation of the primality testing algorithm follows

from [2, Section 10, (11.5), Section 12] and [5, Section 8]. We do not need X2 in
(1.3)(g), because X2 is already set to "true" by the Lucas-Lehmer test (4.4) (cf.
Remark (4.5)). The correctness of (i2a) follows from [2, Section 10].

(1.5) Remark. In [6] it is shown that for positive integers d, s, and n such that
gcd(d, s) = 1 and s > n1l3, there exist at most 11 divisors of n that are congruent to
d modulo s. Furthermore, an efficient algorithm is presented to determine all these
divisors.

Incorporation of this algorithm in the final trial division (1.3)(1) would change the
conditions on e(t) in (1.1)(a) and s in (1.3)(f) into e(t) > N'13 and s > nl/,
respectively. We did not implement this.

In the rest of this paper we will have a closer look at the steps of Algorithm (1.3).

2. Trial Division. Step (b) of the primality testing algorithm (1.3), the trial division,
has two purposes: to detect composite numbers with a small factor, and to determine
the small prime factors of n2 - 1, for numbers n for which we attempt to prove
primality. Let B be as in step (b) of (1.3) the trial division bound.

The trial division routine that will be described below needs a table of prime
numbers up to B. Our implementations made use of a table of prime numbers up to
106. To save memory space, only the differences between consecutive primes were
stored in such a way that as many successive differences as possible were packed in
one machine word.

For the primes up to 106 none of the differences exceeds 1000, so that on the
CDC 170/750, which has 48-bit integers, we can accommodate four differences in
one single-length integer. (In the Pascal implementation we use the full 60-bit

IMPLEMENTATION OF A NEW PRIMALITY TEST 109

machine words of the CDC 170/750 by packing 6 differences in one machine word;
in the Fortran program we do not do so in order to make the program less machine
dependent and to increase its portability.)

(2.1) Trial Division. First set r- and r' equal to the largest odd factors of n - 1
and n + 1, respectively, and set l- and l+ both equal to the empty set 0. Next, for
all primes p < B in succession, do the following:

If n + 11 mod p, then p divides n, so that the execution
of Algorithm (2.1) and of Algorithm (1.3) is terminated.
Otherwise, if n + 1 0 mod p, remove all factors p from r+
and replace l+ by l+U { p }, and finally, if n + 1 2 modp,
remove all factors p from r- and replace l- by I U { p }.

If, after this search for small factors of n3 - n, no factor of n is found, set f and
f+ equal to (n - 1)/r- and (n + 1)/r+, respectively.

This finishes the description of Algorithm (2.1).
(2.2) Remark. In the Fortran program, B can be chosen as any integer in

{11, 12,..., 106} (cf. remark before (5.2)). In practice, we always take B > 55441, so
that step (a) of (1.3) can be avoided (where 55441 is the initial value of t + 1).

(2.3) Remark. In the main loop of Algorithm (2.1) we have to perform one
division of a 'multiple' (n + 1) by a single-length integer (p) for each prime number
p < 106 (for an explanation of 'multiple' see Section 7). If the product of two
consecutive primes Pi and P2 can be represented in one single-length integer, as is
the case on the CDC 170/750, then we can replace the computation of (n + 1)
mod p1 and (n + 1) mod p2 by the computation of (n + 1) mod (P1P2) = m, and
next m mod p1 and m mod P2-

Per two primes, this saves one 'multiple'-single division at the cost of two
single-single divisions. It depends on the size of n and the actual implementation of
the division routines whether this change will result in a speed-up of the trial
division routine (on CDC 170/750 it resulted only in a 2% speed-up).

(2.4) Remark. In an early version of the Pascal program we attempted to find also
some prime factors > B of r- and r+ by means of the Pollard rho-method. Because
this Pollard step appeared to be quite time-consuming, and because we never found
any factor > B, we left this step out in later versions.

As a referee pointed out, it might be useful to use Pollard's p - 1 (or p + 1)
method, or even the elliptic curve method, to find extra factors of r- and r+.

3. The Probabilistic Compositeness Test. Probabilistic compositeness tests are well
known and can be found at many places in the literature [4], [7], [8], [9]. In step (c) of
the primality testing algorithm (1.3) we perform a number of these tests to detect
composite numbers that passed the trial division step. Of course, we cannot
guarantee that compositeness is always detected here (otherwise the rest of Algo-
rithm (1.3) would have been superfluous), but in practice it never occurred that a
composite number passed this step.

For completeness we formulate the probabilistic compositeness test that was,
applied in Algorithm (1.3); furthermore, we discuss some computational aspects of
the test, which will also be useful in the sequel.

110 H. COHEN AND A. K. LENSTRA

Let n - 1 = u * 2k with u odd and k > 1. An integer a is called a witness to the
compositeness of n if the following three conditions are satisfied:

(3.1) n does not divide a,
(3.2) au # 1 modn,
(3.3) au2

'
-1 modn for i = O,I,...,k - 1.

Obviously, if a is a witness to the compositeness of n, then n is composite.
Conversely, if n is an odd composite number, then there are at least 3(n - 1)/4
witnesses to the compositeness of n among {1, 2,. .., n - 1) (cf. [8]). This leads to
the following test.

(3.4) Probabilistic Compositeness Test. First choose at random an integer a from
{1, 2, .. ., n - I}. Next verify (3.2) and (3.3) by computing au mod n (cf. (3.6)), and
successively squaring the result modulo n. If (3.2) and (3.3) hold, then n is
composite and the execution of Algorithm (1.3) is terminated (notice that (3.1)
already holds by virtue of the choice of a). Otherwise, n passes the probabilistic
compositeness test.

This finishes the description of the test.
(3.5) Remark. In our implementations of Algorithm (1.3) the user can specify how

often (3.4) should be performed (m in (1.3)(c)). For composite numbers, a small
number of probabilistic compositeness tests (m = 1 or m = 2) usually suffices to
detect compositeness. For numbers that already were declared to be 'probably
prime' by others, and that had to be proved prime by (1.3), we skipped the
probabilistic compositeness test (3.4) (m = 0).

In fact, we only used (3.4) to debug the rest of Algorithm (1.3): If a number
passed a small number of probabilistic compositeness tests, and it was declared to be
composite by the rest of (1.3), this always led to the discovery of a bug in the
implementation of (1.3). Of course, not all bugs are detectable in this way.

(3.6) Remark. We now discuss some computational aspects of the exponentiation
modulo n in (3.2). As is well known, au mod n can be computed in [log2 uj
squarings and v(u) multiplications of integers modulo n, where v(u) is the number
of ones in the binary representation of u (cf. [4, Section 4.6.3]). We can improve on
the number of multiplications modulo n as follows [4, p. 444].

Instead of the binary representation of u, we use, for some integer m to be
specified below, the 2mary representation (Ut, ut,1 .u.. , uO) of u, i.e., u = u 2"It
+ ut 12m(t-1) + * * + u12m + uo, where u, E {0,1, I,-, 2"' - 1} and u, 0 0. Let
Ul= vI2', with v, odd and 0 i Km for 0 < i < t (cf. (3.7)).

To compute a' mod n, first compute the first 2" -'odd powers of a modulo n by
repeated multiplication by a2 mod n. This takes 2"' 1 multiplications of integers
modulo n. We get a, = a, a3 = a3 mod n,...,a2.1 = a21 --1 modn.

Next compute r = aut mod n by It successive squarings module n of a,,,. Finally,
perform the following three steps for i = t - 1, t - 2,. . ., 0, 0 in succession:

-raise r to the (2m-'")th power by m - li successive squarings modulo n;
-multiply r by a,,, modulo n;
-raise r to the (2')th power by 1, successive squarings modulo n.

As a result, we get r = au mod n.
The total number of multiplications modulo n is 2'" ' + vPn(u), where 1 u(u) is

the number of nonzero u,'s: the total number of squarings modulo n is, as in the

IMPLEMENTATION OF A NEW PRIMALITY TEST 111

binary method, [log2ul. Clearly, m should be chosen in such a way that 2r-i +

v,,(u) is minimal. We estimate vm(u) by (1 - 2-m) [log2, u] and because u will
be of the same order of magnitude as n, we can take m such that 2m-1 +
(1 - 2-m)[log 2e, n] is minimized.

(The Fortran implementation was devised for numbers of up to 213 decimal
digits, so that we used a fixed value m = 6. Notice that for this choice of m the
2"lary method can be expected to perform considerably less multiplications modulo
n than the binary method.)

(3.7) Remark. Because of their constant use, we precomputed two tables contain-
ing v, and l, for all possible values of u, E {0, 1, . . ., 2M - 1

(3.8) Remark. In the sequel, we will use the method described in (3.6) for
exponentiations in (Z/nZ)[T]/(T2 - uT - a) and Z[gpA]/nZ[~pA] as well. The only
difference then is that we have to apply other squaring and multiplication routines.
The same tables as in (3.7) can be used.

4. The Lucas-Lehmer Test. In this section we present the details of the Lucas-
Lehmer test that is used in step (e) of (1.3). As we will see in Section 5, the
Lucas-Lehmer test enables us to select fewer q-primes in step (f) of (1.3). Because the
Lucas-Lehmer test is relatively fast, compared to the tests in step (i) of (1.3), this can
save a lot of computing time. Let 1-, 1+, r-, r+, f-, f+, be as computed in step (b)
of (1.3) the odd prime factors < B, nonfactored parts, and factored parts of n - 1
and n + 1, respectively.

In rare cases we can even oinit the rest of (1.3). This happens if the following
condition is satisfied, where B denotes the trial division bound:

(4.1) n < max(f , f+) .f- f+ B3.

This is a slight refinement of what can be found in the literature, namely (4.1) with n
replaced by 2n [4, p. 378] (see (4.5)).

For an explanation of the Lucas-Lehmer test as it is formulated here, we refer to
the extensive literature on this subject [10]. We need the following two auxiliary
tests. By p, we denote the ith prime number.

(4.2) Test for n - 1. Let p be an odd, not necessarily prime number dividing
n - 1, and let prod E Z/n Z be an integer modulo n to be specified in (4.4).

Look for a prime number x E { Pi, P2, P50 } such that x (n-
-

1 mod n. If
no such x is found, Test (4.2) fails. Otherwise, verify that x"1 = 1 mod n; if this is
not the case, Test (4.2) halts, because n is composite. Otherwise, replace prod by
prod (x(n - 1)lp -1) mod n. If prod = 0, then the old value of prod has a nontrivial
gcd with n. In this case, Test (4.2) halts, because n is composite; otherwise, report
that n passes Test (4.2).

If p is prime then, for those 1 > 0 for which p' divides t and flagpi ="true", set
,p = xi(n-l)lP' mod n for i = 0, 1,. .., p' - 1. (In the Fortran implementation,

which allows a maximal value 55440 = 24 32 . 5 - 7 . 11 for t, this may be done for
p1 = 3, 9, 5, 7, 11.)

This finishes the description of Test (4.2).
(4.3) Test for n + 1. Let p be a not necessarily prime number dividing n + I, and

let prod E Z/n Z be as in (4.2). In this test, computations have to be performed in
the ring A = (Z/nZ)[T]/(T2 - uT - a), for integers u and a to be specified in

112 H. COHEN AND A. K. LENSTRA

(4.4). (We represent elements of A as x0 + xla where x0, xl e Z/nZ and a=

(T mod T 2 - uT - a).) How these computations should be carried out is explained
in Remark (4.9).

Look for an element x E A of norm one such that x(n +)Ip * 1 in the ring A (see
Remark (4.10)). If no such x is found after 50 trials, Test (4.3) fails. Otherwise,
verify that xn+ = 1; if this is not the case, Test (4.3) halts, because n is composite.
Otherwise, let x ("+')P - 1 = x0 + x1a e A. Choose i E {0, 1} such that xi A 0,
and replace prod by prod - x, mod n. If prod = 0, then the old value of prod has a
nontrivial gcd with n. In that case, Test (4.3) halts, because n is composite;
otherwise, report that n passes Test (4.3).

This finishes the description of Test (4.3).
(4.4) Lucas-Lehmer Test. Set prod e Z/n Z equal to one; in prod we accumulate

numbers that should be tested for coprimality with n at the end of the test.
We say that this test fails if it fails itself, or if one of the tests (4.2) or (4.3) fails; in

either case, the execution of (4.4) can be terminated. It is also possible that n is
proved to be composite during execution of this test or one of the tests (4.2) or (4.3).
As soon as that happens, the execution of (4.4) halts. If the test does not fail and if n
is not proved to be composite in this test, we say that n passes the Lucas-Lehmer
test. In the latter case, it is possible that the primality of n is proved, namely if (4.1)
holds (cf. step (f)).

(a) For all primes p e 1- verify that n passes Test (4.2).
(b) If (4.1) holds (i.e., if n is prime, then the Lucas-Lehmer test will be able to

prove it) and if n - 1 is not completely factored (i.e., r-/ 1), verify that n passes
Test (4.2) with p replaced by r-.

(c) Define the ring A that has to be used in Test (4.3) by performing (cl) if n 1-
mod 4 and (c2) if n 3 mod 4.

(cl) Case n 1 mod 4. Set u = 0. Look for a prime number a E { P1, P2,.. P50 }
such that a(n-1)/2 = -1 mod n. If no such a is found, the Lucas-Lehmer test fails.
Otherwise, the ring A is defined as (Z/nZ)[T]/(T2 - a).

For those values of I > 1 for which 2' divides t and for which flag2 = " true" we
set, in the course of the above computation, fi9 = a(n 1)/2' mod n for i =

0,I,-., 2' - 1.
(c2) Case n 3 mod 4. Set a = 1. Look for an integer u E {1, 2,..., 50) such that

the Jacobi symbol ("2 ,+ 4) equals -1. If no such u is found, the Lucas-Lehmer test
fails. Otherwise, the ring A is defined as (Z/nZ)[T]/(T2 - uT - 1). Verify that
a n+1 = -1 in A; if this is not the case, the Lucas-Lehmer test halts, because n is
composite.

(d) For all primes p E I' verify that n passes Test (4.3).
(e) If (4.1) holds and if n + 1 is not completely factored (i.e., r'=* 1), verify that n

passes Test (4.3) with p replaced by r+.
(f) Check that gcd(prod, n) = 1. If this is not the case, the Lucas-Lehmer test

halts, because a nontrivial divisor of n is found. Otherwise, report that n passes the
Lucas-Lehmer test, and if (4.1) holds, report that n is prime.

This finishes the description of the Lucas-Lehmer test.
(4.5) Remark. Notice that, by (4.4)(cl) and (4.4)(c2) and [2, (7.24), (10.8)], the

Lucas-Lehmer test has also proved that the condition [2, (6.4)] that has to be verified

IMPLEMENTATION OF A NEW PRIMALITY TEST 113

for all primes dividing t holds for p = 2 (and if this is not proved, it is shown that n
is composite unless the test failed). This easily implies the slight improvement
mentioned in connection with (4.1).

It follows from (4.2), (4.3), and [2, Proposition (10.7)] that condition [2, (6.4)] also
holds for the odd primes dividing f - +. This explains step (1.3)(g).

(4.6) Remark. The flagpA and PPk are kept for later use in step (i) of (1.3). As we
have seen in Section 1, flagpk ="true" implies that we can replace the Jacobi sum
test in Z[tpA]/n Z[?PA] by a similar but 'cheaper' test in Z/n Z (see [2, Section 10]). A
similar speed-up is possible for primes p dividing n + 1 and t, but we did not
implement that.

(4.7) Remark. After execution of the Lucas-Lehmer test, the primes p e 1-U 1l
can be removed from the list of candidate q-primes in step (f) of (1.3).

(4.8) Remark. The method described in (3.6) can be applied for the exponentia-
tions in the Lucas-Lehmer test. The only difference is that in Test (4.3) and in
(4.4)(c2) the squarings and multiplications have to be carried out in the ring A
instead of in Z/n Z (see (4.9), cf. (3.8)).

(4.9) Remark. To be able to carry out the exponentiations in the ring
(Z/n Z)[T]/(T2 - uT - a), we need multiplication and squaring routines for ele-
ments of this ring. Here we explain how these routines can be implemented. We
distinguish the following cases: Multiplication for n 1 mod 4 (so u = 0), multipli-
cation for n 3 mod 4 (so u + 0 and a = 1), and a combined squaring routine for
elements of norm one in (Z/nZ)[T]/(T2 -uT - a). We also mention how a n+? in
(4.4)(c2) can be computed.

-Multiplication for n 1 mod4 in (Z/nZ)[T]/(T2 - a). Let xo + x1a, yo +
y1a (E (Z/nZ)[T]/(T2 - a); then (xo + x1a)(yo + y1a) = (xo yo + xl y1a) +

(x0 ^ y1 + x1 yo)a = z0 + z1a. This is computed in three 'multiple'-'multiple' mul-
tiplications instead of four as follows (for an explanation of 'multiple' see Section 7):

Po = X0o, P1 = X1 * Yi, So = X0 + x1, s1 = Yo + yi, and zo = (Po + ap1) mod n,
z = (so - Po - PI) mod n.

-Multiplication for n 3 mod4 in (Z/nZ)[T]/(T2 - uT - 1). Let xo + x1a,

yo + y1a E- (Z/nZ)[T]/(T2 - uT - 1); then (xo + x1a)(yo + y1a) = (xo - yo +
xi Y1) + (xo Yi + X1 Yo + x1 .Y u)a = zo + z1a, which is computed by Po =

Xo Yo, Pi = Xi ,Yi, So = X0 ? X1 S = yo +yl, and zo = (Po +pI) modn, Z1 =

(So 51 + (u - 1)pI -po) mod n.

-Combined squaring in (Z/nZ)[T]/(T2 - uT - a). Because we only need
this routine for x0 + Xla E (Z/nZ)[T]/(T2 - uT - a) of norm one, we have

(Xo + X a)2 = (xo x1 * u + 2Xo2 - 1) + (X2 au + 2xo * x1)a = Zo + z1a, as is
easily verified. This is computed by s = ux1 + 2xo, and zo = (xo- s - 1) mod n,
Z= (x1 . s) mod n.

-Computation of an+' in (Z/nZ)[T]/(T2 - uT - 1). Although a has norm -1,
we can apply the above multiplication and squaring (for elements of norm one) by
observing that a2 = ua + 1 has norm one, and that an+' = (-2)(n+I)/2.

(4.10) Remark. To get elements of norm one in A = (Z/nZ)[T]/(T2 - uT - a)
in Test (4.3), we try elements of the form (a + m)/(a- + m) e A for m E

{1,2,...,50}, where a denotes the conjugate of a (so a- = -a if n 1 mod4, and

114 H. COHEN AND A. K. LENSTRA

= u - a if n 3 mod 4). It is easily verified that this yields

n2 +a (2m? u)at
- + for both n l I mod 4 and n -- 3 mod 4

m(m + u) - a m(m + u) - a

(notice that (m(m + u) - a) can be computed in Z/nZ unless n is composite).
(4.11) Remark. The number 50 in (4.2), (4.3), and (4.4)(c) is arbitrarily chosen, but

in practice is sufficient. See [2, remark preceding (10.4). (11.6)] for a discussion of
this point.

(4.12) Remark. There are inequalities similar to (4.1) under which only the tests
for n - 1 (Test (4.2)) need to be done, or only the tests for n + 1 (Test (4.3)). For
instance, if f-> 'n/2, then execution of (4.4)(a) suffices to prove the primality of n.
If f- < ni/2 but 1. B >? n'/2, then n must also pass Test (4.2) with p replaced by
r-. Similar inequalities hold for n + 1.

5. Selection of t and s. It follows from [5, Section 8] that the Lucas-Lehmer test
can be combined with the primality testing algorithm from [2, Section 12]. Here we
describe how this can be done.

Let t be as in (1.1)(a). Assume for the moment that every prime p I t satisfies
condition [2, (6.4)], i.e.,

(5.1) for every prime divisor r of n there exists a p-adic integer

(5.1) lp(r) E Zp such that rP-1 = (nP-R)IP(r) in the group 1 + pZP
(where Zp denotes the ring of p-adic integers). In (4.5) we have seen that this
condition already holds for p = 2. For the other primes p dividing t for which we
need this condition, a Boolean variable Ap is declared in step (g) of Algorithm (1.3);
as soon as the condition is proved to hold for such a p, we put Ap = "true". On
successful termination of Algorithm (1.3) all Ap will be set to "true", which justifies
the above assumption.

For every prime power pk > 2 dividing t, we define a cost cpA E Z. This cost cpA
is an estimate (in milliseconds for instance) of the running time needed to perform
step (i) of Algorithm (1.3) for pk and one q-prime with k = vp(q - 1). In step
(1.3)(i) the most time will be spent in the uth powering in (1.3)(i2); if flagPA = "true"
this computation can be done in Z/n Z (as in (i2a)), otherwise we work in

Z[RPA]/nZ[tpA] (as in (i2b)).
Defining cpA (" true") and cpA ("false") as the cost of (i2a) and (i2b), respectively,

we set cpA = cpA (flagpA). Both cpA (" true") and cpA (" false") depend on the implemen-
tation and the number of binary bits of n, and they are best determined empirically
as functions of the number of bits of n (this is what we have done in the Fortran

implementation).
Having defined cpA, we define the cost w(q) of a q-prime as

w(q) = E cooA.
pJq-1.k =vp(q-1)

Another function of the number of bits of n that we will need, and that is best

determined empirically, is an estimate for the running time needed for one iteration

of the final trial division step of Algorithm (1.3) (that is, one execution of (11), (12),
and (13) of (1.3)). For a fixed value of n we denote this running time by Cftd. Of

course, bftd is measured in the same units as cPo.

IMPLEMENTATION OF A NEW PRIMALITY TEST 115

As in (1.3)(b), let f-- f+ be the factored part of n2 - 1, and assume that
vp(f-* f') = Up(n 2 - 1) for the primes p dividing t (this implies that in the Fortran
implementation the trial division bound should be at least 11).

(5.2) Let t' be an even divisor of t. Defining

Si = (20) 17H p"Pt)+vP(f- *) p prime

PIfdf+

then

(5.3) for all r dividing n we have that r nI(r) mod sl,

where 1(r) IP(r) mod p'P(t') for all p It'. As mentioned in (1.3)(e), this follows
from the fact that n passed the Lucas-Lehmer test. Observe also that (5.1) is
satisfied for the primes dividing s,, because of the Lucas-Lehmer test (cf. step
(1.3)(g) and Remark (4.5)).

If s, > n1"2, then (5.3) suffices to prove the primality of n by means of the final
trial division (1.3)(1) with t and s replaced by t' and sj, respectively. If, on the other
hand, s, < n 1/2, let s2 be a product of distinct q-primes such that q - l I t' and
q + s, (so, these q-primes can be found among the factors of e(t) and are tabulated
in (1.1)(a)).

The pseudoprime tests with Jacobi sums as in (1.3) (with t replaced by t'),
combined with (5.3), yield

for all r dividing n we have that r = nI(r) mod (s, 52.)

where

(5.4) s -2 J* ptP(nP 1-1)+vp(t')-1

p prime

PI t',p 112

and 1(r) as above. Obviously, in order to be able to prove the primality of n by
means of (1.3)(1), we should choose 32 in such a way that s* s' > n1"2.

We now discuss how 32 should be chosen such that 52> n1/2/s1 and Tqj.2w(q) is
minimal (where we take the minimum over 32 for which S2 > n1/21/s1). In [2, Section
4] we have seen that this problem can be formulated as a knapsack problem, which
makes an efficient way of finding an optimal solution unlikely to exist. As suggested
in [2, Section 4], we approximate an optimal solution in the following way.

First we put

s2 H q,
q prime

q - I I t', q +

and S2 as in (5.4). If 52 < n1/2/s,, then the current value of t' is too small and (5.2)
fails. If, on the other hand, S2> n 12/sI, we proceed as follows. As long as 32 has a
prime factor q such that s2/qq(S2) > n1/2/s,, we choose such a q with
w(q)/log(qV(S2)) as large as possible, and replace ?2 and S2 by ?2/q and S2/q1q(S2)

respectively.

116 H. COHEN AND A. K. LENSTRA

From (5.2) we get the following algorithm for the selection of t and s.
(5.5) Selection of t and s. For all even divisors t' of t do the following:

Apply (5.2) and compute for those values of t' for which (5.2)
does not fail the corresponding approximations s2 (and s2) to
the optimal q-primes choice, and the total cost c(t')=

t'*Cftd + Eq,,2 (q)

Replace t by the value of t' for which c(t') is minimal, and put s = s2, where sI
and s2 correspond to the chosen value for t. This finishes the description of (5.5).

(5.6) Remark. If we add a test "r < nW" in step (13) of Algorithm (1.3) before
the test "r I n " (and perform the latter only if the former is satisfied), then we can
replace the t' cj,-term in Algorithm (5.5) by t' Cfad n1/2 s-1 (where s corre-
sponds to t'). Of course, this slightly increases the value of Cfdd.

(5.7) Remark. It is possible that Algorithm (5.5) chooses t and s = s S2

such that there is an odd prime number p dividing t for which p + q - 1 for all
primes q dividing s2. It can then be proved that p divides s, with vt(s) = vp(t) +

vp(nP-1- 1). Removing vp(t) factors p from s allows us to remove the same
number of factors p from t also. This does not change the set of numbers that are
congruent to a power of n modulo s. The resulting value of s, however, may be
smaller than nW/2, and therefore it might be reasonable to take these s's also into
account in Algorithm (5.5).

This complicates step (13) of Algorithm (1.3), where we will have to trial divide all
numbers of the form r + I - s < n172 for i > 0, and accordingly change the t' cftd-
term in Algorithm (5.5) into t' Cftd

- ni/2 *s'l. We did not implement this.
(5.8) Remark. The choice of t = 55440 guarantees that the Fortran implementa-

tion can handle numbers of up to 213 decimal digits. From (5.2) it follows that
larger numbers can also be handled if we are able to find enough prime divisors of
n2- 1.

(5.9) Remark. With respect to Remark (5.7) we mention the following, not
implemented improvement, which is due to H. W. Lenstra, Jr. Instead of choosing
s > n1/2, we could take s > n'72t, where the factor t may be replaced by any
sufficiently large number. We then expect that only one of the t possible divisors of
n in step (1.3)(1) is < n1/2. At the cost of one test "r < n1/2" per iteration of
(1.3)(1), this saves us most trial divisions.

It is not unlikely that this will prove to be an important improvement for larger
values of n than we tested.

6. Pseudoprime Tests with Jacobi Sums. Let q be a prime number dividing s2 and
let p be a prime number dividing q - 1. Here we explain how the pseudoprime tests
with Jacobi sums in (1.3)(i) and (1.3)(j), (k) for the pair q, p k can be performed. So
we put k = vp(q - 1) in case of (1.3)(i), and k = 1 in case of (1.3)(j), (k). Let
m = (p _ 1)pk-.

The computations in (1 .3)(i) can all be done in the cyclotomic ring Z[~PA]/n Z[Pa].
In (1.3)(i2a), in the case flagPA ="true", we can work in the subring Z/nZ after

application of the homomorphism X. This case will be discussed at the end of this

section. First we explain how to compute in Z[tPk]/nZ[tPk], how to handle the
inverse of a, in (1.3)(il), and how we implemented (1.3)(i2b).

IMPLEMENTATION OF A NEW PRIMALITY TEST 117

An element a = Z%'` akA E& Z[tpA]/nZ[tpA]
is represented as a vector (a,)"-'

where a, E {O,1, ..., n - 1}. Addition and subtraction of two elements of

Z[p]/n Z[gpA] is done by componentwise addition or subtraction modulo n of the
corresponding vectors. Multiplication of two elements of Z[PA]I/n Z[?PA] can be seen
as multiplication of two polynomials of degree less than m with coefficients in
Z/n Z and modulo the pk th cyclotomic polynomial YP -l X'PA 1

A straightforward implementation would need m2 integer multiplications, whereas,
owing to a theorem of Winograd [4, p. 495], 2m - 1 integer multiplications suffice.
We did not implement Winograd's methods, however, because they involve a large
overhead of additional operations. Instead we used special formulae for multiplica-
tion and squaring for each pk. which improve considerably on the m2-method, but
which do not achieve Winograd's (2m - 1) bound for the integer multiplications. In
the Appendix, these formulae are given for pk = 3, 4, 5, 7, 8, 9, 11, 16.

Better formulae can certainly be given and the authors would be happy to hear
of nonnegligible improvements. For example, in auxiliary routine 3, one
'multiple'-'multiple' multiplication can be gained by noting that the second time
auxiliary routine 1 is called, the quantity a2- b2 is recomputed. This would gain
three such multiplications in the multiplication for p = 11, and one in the squaring
for p = 11.

The formulae in the Appendix have all been obtained by using recursively the
identity

(A1X + A0)(B1X + BO)

= A1B1X2 + ((Al + A0)(B1 + BO) - A1B - AoBo)X + AoBo

which uses only three multiplications instead of four. This was combined with trial
and error methods to eliminate unnecessary multiplications and, if possible, also
some additions or subtractions. (The identity above was already used to compute in
(Z/nZ)[T]/(T2 - a) for n 3 mod 4, see Remark (4.9).) It seems plausible that the
number of multiplications in squaring for p = 7 can be reduced from 14 to 12 (as
for pk = 9). Also, the number of multiplications in squaring for p = 11 seems really
too high.

The inverse of the automorphism a. from (1.3)(ila) can be computed as follows.
(6.1) Computation of a-'. For a = (a,)"L E- Z[?P]/nZ[DpA] this algorithm com-

putes b = (b,)7L7 E) Z[tPk]/nZ[DPA] such that a,`(a) = b.
Let a, =O for i > m. First we put, for i = 0,1,. .., n- in succession, b =

axAmodp. Next we replace, for i = m, m + 1, k - 1 in succession, b, A-, by

(b,_JPA--ax modpk)modnforlIj<p.
As a result, we have b such that ax(b) = a.
The small powers of elements of Z[tpA]/nZ[~pk] that we need in (1.3)(il) are

computed by repeated multiplication in the same iteration that computes the JO p q
and jvpq (in (1.3)(ila) and (1.3)(ild)). The uth power in (1.3)(i2b) clearly should
not be done by repeated multiplication. Instead, we use the method described in
(3.6) with the squaring and multiplication in Z/nZ replaced by the squaring and
multiplication in Z[tPk]/nZ[DPA] (cf. (3.8) and Appendix).

The integer h E {O,,...,p k- 1} in (1.3)(i2b) is determined in the following
way.

118 H. COHEN AND A. K. LENSTRA

(6.2) Determination of h. For a = (al)7%_1 E Z[tPk]/nZ[tPk] this algorithm de-
termines an integer h E {0 , .pk - 1} such that a = if such an h exists.

If there exists an integer I E {0, 1, . . ., m - 1 } such that al = 1 and a, = 0 for
0 < i < m and i 0 1, or if there exists an integer I E {0, 1, . . ., pkl - 1} such that
a,+JP-

I- -1 mod n for 0 j < p - 1 and a1 = 0 for the other indices, then put
h = I and (6.2) terminates. Otherwise, h does not exist and (6.2) fails, which implies
that, in Algorithm (1.3), n is proved to be composite.

Finally, we discuss what should be done in (1.3)(i2a), in the case that flagpA
="true". For a = (a,)M%1 E Z[tPk]/nZ[tPA], we compute X(a) = Ymi1 aip3> E

Z/n Z by means of a Horner scheme, or by means of the powers /l3pA for 0 < i < m,
which were computed in (1.3)(e). To raise X(JOp q) E Z/nZ to the uth power, we
apply (3.6), and determination of h is simply done by comparing X(jo p q)U . x(,Jq)

withpk for 0 < i < pk. where of course the equality should hold modulo n.

7. Examples and Running Times. In both our implementations we distinguish
between two kinds of fixed-length multiprecision integers, the ordinary 'multiples',
and the so-called 'doubles'. The number of binary bits of a 'multiple' should be
somewhat larger than the number of binary bits of n, and a 'double' contains twice
as many bits as a 'multiple'. Addition and subtraction of two 'multiples' ('doubles')
again yields a 'multiple' ('double'), multiplication of two 'multiples' yields a 'double',
and remaindering modulo a 'multiple' of a 'multiple', or of a 'double', yields a
' multiple'. For all these operations the classical algorithms (cf. [4]) were used.

In the Pascal program, devised for numbers of up to 104 decimal digits, a
'multiple' ('double') is represented by 8 (16) words of 47 binary bits each; in the
Fortran program a 'multiple' ('double') contains 16 (32) words of 47 bits. In Table 1
we give the average running times (in milliseconds) of the elementary arithmetic
operations on a CDC 170/750. These routines were written in the assembly
language Compass. Notice that the numbers in Table 1 are still too small to get the
expected ratios of the running times. For example, for the multiplication we would
expect that the 16 word entry takes four times as long as the 8 word entry; instead,
we get a ratio 0.21/0.07 = 3. This is due to overhead cost.

TABLE 1

Average running times of elementary arithmetic operations

on the CDC 170/750 in milliseconds

'multiple' consists of 8 words of 47 bits 16 words of 47 bits

'multiple' + 'multiple' 0.014 0.019
' multiple'. 'multiple' 0.07 0.21

'double' mod 'multiple' 0.20 0.47

The running times of the various steps of the CDC 170/750 version of the Fortran
program are given in Table 2. For each number d in the first row we tested 20 prime
numbers of d decimal digits. Each prime was selected by drawing a random number
of d digits and using the program to determine the least prime exceeding the number
drawn.

For each step of Algorithm (1.3) listed in the first column of Table 2, and for each
number of digits d in its first row, the table contains the following data: Average

IMPLEMENTATION OF A NEW PRIMALITY TEST 119

TABLE 2
Running times of the Fortran program

on the CDC 170/750 in seconds (see text)

number
of digits 100 120 140 160 180 200

7.965 7.972 7.963 7.951 7.973 7.950
trial division 0.039 0.025 0.027 0.047 0.016 0.035

up to 106 8.019 8.010 8.022 8.010 7.999 8.000
7.824 7.887 7.904 7.778 7.926 7.859

four 0.567 0.759 0.957 1.292 1.558 1.998
probabilistic 0.015 0.023 0.029 0.054 0.059 0.127

compositeness 0.602 0.803 0.999 1.387 1.680 2.191
tests 0.544 0.723 0.906 1.181 1.472 1.552

2.211 2.419 3.705 5.086 5.354 6.653
Lucas-Lehmer 0.936 0.777 1.547 2.722 2.031 2.214

test 3.930 4.348 6.371 12.615 9.494 10.469
0.724 0.864 0.480 2.147 1.365 2.834

0.017 0.017 0.016 0.015 0.014 0.015
selection 0.003 0.003 0.003 0.002 0.002 0.002

of t and s 0.023 0.024 0.023 0.019 0.020 0.020
0.011 0.012 0.012 0.011 0.011 0.012

37.334 78.151 130.251 205.347 308.475 438.143
Jacobi sum 15.696 24.042 42.919 45.350 56.701 80.472

tests 62.705 113.357 186.919 252.452 392.170 560.381
12.426 34.503 52.947 64.833 206.021 205.896

0 0 0 0 0 0
additional 0 0 0 0 0 0

tests 0 0 0 0 0 0
0 0 0 0 0 0

2.336 8.468 13.525 26.501 36.341 40.978
final trial 1.379 7.062 5.257 8.301 0.658 1.606
division 6.216 27.571 28.782 33.927 37.930 43.292

1.099 2.422 2.546 16.045 35.280 35.761

50.442 97.797 156.429 246.204 359.728 495.748
total 15.203 28.274 43.122 44.144 55.833 80.025

running time 75.416 147.259 210.756 298.144 439.039 614.254
26.031 51.077 77.316 111.888 259.021 258.859

running time t = (j21 ti)/20, the sample standard deviation ((Y21(ti -
the maximal running time, and the minimal running time. All times are in seconds.
For running times of the Pascal program we refer to [2, Table 3]. Notice that in
Table 2 the average time to do the trial division does not depend on the size of the
dividend. This is because, at the time we made the table, our 'multiple'-'single'
division routine did not care about leading zeros, and because the Compass routines
are written for numbers in fixed multiprecision (16 words of 47 bits in Table 2). This
is, of course, quite inefficient, and the running times given in Table 2 could be easily
improved by making the precision vary with the number of digits of n.

The Fortran program was used to prove the primality of some of the numbers of
the Cunningham tables [3], which were not yet proved to be prime. To illustrate the
primality testing algorithm (1.3) we will go through the primality proof for one of

120 H. COHEN AND A. K. LENSTRA

these numbers, namely
n = 38765043353179975014693910353191097086635896251806

23029822890926723711514115245155566479256098717968
31049683605391251330391031054184702591128155858755
97000563569377039492262413967236168374702472481350
48208451745439902122005282381436679587515252273,

being one of the factors of 2892 + 1. (To handle this number, which has 247 decimal
digits, we used 'multiples' of 24 words of 47 bits; as a consequence, the basic
operations became somewhat slower.)

Of course, we cannot guarantee beforehand that the Fortran program, with a
maximal value of 55440 for t, will be able to prove the primality of this number,
because n > N (cf. (1.1)(a)). In several respects, however, n appears to be a lucky
number. The running times below are on a CDC 170/750.

After verification of (1.3)(a), we performed (2.1) with B = 106. After 8755
milliseconds we found 1-= {7,223,2017,4001,162553} and 1+= {3,19,367}. Be-
cause n was already declared to be 'probably prime' in the Cunningham tables, we
did not perform any probabilistic compositeness test (3.4), so m = 0 in (1.3)(c) (cf.

(3.5)).
In (1.3)(d) we found flag3 ="false", flag4 ="true", flag5 ="false", flag7 ="true",

flag8 ="true", flag9 ="false", flag11= "false", flagl6= "true". This implies that
the Jacobi sum tests are relatively cheap for pk = 4, 7, 8, 16. The Lucas-Lehmer test
(4.4) for the primes in 1-u l+ U {2} took 14679 milliseconds. Because many prime
divisors of n2 - 1 were found, all remaining q-primes (that is, the q-primes except 2,
3, 7, and 19) just appeared to be sufficient to get sI S2> n'/2. The distinct primes
dividing S2 are

{5,11,13,17,23,29,31,37,41,43,61,67,71,73,89,113,127,181,
199,211,241,281,331,337,397,421,463,617,631,661,881,
991,1009,1321,2311,2521,3697,4621,9241,18481,55441) .

The corresponding t value is 55440. In (1.3)(g) all XP for p It were found to be
" true" already. The pseudoprime tests with Jacobi sums in (1.3)(h) & (i) were
performed in 806940 milliseconds. We list some typical timings (in seconds) in Table
3.

The additional tests in (1.3)())&(k) do not have to be performed, because the XP
were already "true" in (1.3)(g); notice that = "true" also follows from the h

TABLE 3
Running times of Jacobi sum tests

on the CDC 170/750 in seconds

pt q running time of (1.3)(il) h in (1.3)(i2)

3 13 2.079 1
4 13 0.986 1
2 23 0.975 0

11 23 26.256 8
5 41 5.427 3
8 41 1.019 4
7 1009 1.118 5
9 1009 9.908 0

16 1009 1.164 11

IMPLEMENTATION OF A NEW PRIMALITY TEST 121

values for p = 3, 5, 7, 11 in Table 3 (cf. (1.3)(i3)). The 55440 trial divisions in (1.3)(1)
took 56296 milliseconds. It follows that the primality proof for this n was completed
within 15 minutes.

We conclude this section by listing in Table 4 the running times (in seconds) of
the Fortran program when executed on CDC 170/750, CDC 205, and Cray 1, and
applied to

n = 33954972493534960748198631920405504974392404498599
70217757256140913782004041861855452464309315250380
59779334403309483454226092284418382591337309620364
938100840903721641622176153759

(this is one of the 180-digit primes that were used for Table 2).

TABLE 4
running time multiple' represented as

CDC 170/750 378.007 16 words of 47 bits
CDC 205 590.623 32 words of 24 bits

Cray 1 196.544 32 words of 24 bits

Obviously, the architecture of the Cray 1 is better suited for computations on
integers of this size than the CDC 205. To take full advantage of the vector registers
of the CDC 205, much longer vectors should be used, whereas the Cray 1 is designed
to handle vectors of length 64 (which are, in our case, the 'doubles').

Acknowledgments are due to H. W. Lenstra, Jr. for his great help in writing this
paper, and to D. T. Winter for writing the multiprecision routines.

University de Bordeaux I
Talence, France

Centrum voor Wiskunde en Informatica
Amsterdam, The Netherlands

Department of Computer Science
The University of Chicago
Chicago, Illinois 60637

1. L. M. ADLEMAN, C. POMERANCE & R. S. RUMELY, " On distinguishing prime numbers from
composite numbers," Ann. of Math., v. 117, 1983, pp. 173-206.

2. H. COHEN & H. W. LENSTRA, JR., "Primality testing and Jacobi sums," Math. Comp., v. 42, 1984,
pp. 297-330.

3. J. BRILLHART, D. H. LEHMER, J. L. SELFRIDGE, B. TUCKERNIAN & S. S. WAGSTAFF, JR., FactoriZa-
tions of b" + 1, b = 2, 3, 5, 6, 7, 10, 11, 12 Up to High Powers, Contemp. Math., vol. 22, Amer. Math.
Soc., Providence, R. I., 1983.

4. D. E. KNUTH, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, 2nd ed.,
Addison-Wesley, Reading, Mass., 1981.

5. H. W. LENSTRA, JR., Primality Testing Algorithms (after A dieman, Rumell and Williams), Seminaire
Bourbaki, v. 33, 1981, pp. 243-257; in Lecture Notes in Math., vol. 901, Springer-Verlag, Berlin, 1981.

6. H. W. LENSTRA, JR., "Divisors in residue classes," Math. Comp., v. 42, 1984, pp. 331-340.
7. H. W. LENSTRA, JR. & R. TIJDEMAN, Computational Methods in Number Theorv, Mathematical

Centre Tracts 154, 155, Mathematisch Centrum, Amsterdam, 1982.
8. M. 0. RABIN, "Probabilistic algorithms for primality testing," J. Number Theory, v. 12, 1980, pp.

128-138.
9. R. SOLOVAY & V. STRASSEN, "A fast Monte-Carlo test for primality," SIGA CT News, v. 6, 1977. pp.

84-85; erratum, ibid., v. 7, 1978, p. 118.
10. H. C. WILLIAMS, "Primality testing on a computer," Ars Conibin., v. 5, 1978, pp. 127-185.

	Cit r125_c125:
	Cit r132_c132:

